# Observations of North Atlantic Parameters

### Johannes Karstensen

GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel, Germany





## The Subpolar North Atlantic 2012-2016

- Exciting times for observational oceanography!
  - Since 2011/12: 4 out of 5 NAO high winter
  - Return of deep convection
  - Appearance of the "cold blob"
- Installation OSNAP array
- Beyond SPNA (but closely connected) Arctic melting continues with lowest sea ice records 1<sup>st</sup>: 2012, 2<sup>nd</sup>: 2016, ...
  - -> Blue-Action H2020 project





**NACLIM** 

## Outline

- A brief introduction into the NACLIM observations in the Subpolar North Atlantic
- Sustained Ocean Observing
  - a structured approach: the Framework for Ocean Observing





## NACLIM observational program

- Mix of long term moorings (inflow to the Nordic Seas, overflows, deep western boundary current, convection depth)
- Process studies:
   EGC moorings freshwater
   transport & entrainment in
   overflow plume
- Hydrography & Tracer sections



(after NACLIM Deliverable D22.31)



### Climate data time series at NACLIM website

#### **Fluxes**

- Faroe Bank Channel overflow transport
- Hornbanki section Atlantic inflow volume and heat fluxes
- Labrador Sea western boundary current transport at 53° N
- RAPID transport of MOC components at 26.5° N
- Wyville Thomson Ridge overflow transport
- Faroe Shetland Channel volume, heat and salt fluxes of Atlantic Water, and total fluxes
- Denmark Strait overflow transport
- Iceland-Faroes Atlantic inflow
- Kogur Array freshwater flux

#### **Entrainment**

Denmark Strait overflow plume

#### **Mooring data**

- Angmagssalik array
- Irminger Sea mooring Long-term Ocean Climate
   Observations LOCO2/3

#### **Hydrography data**









 Properties of the Atlantic Water Core in the Faroe Current



















### NACLIM data and data access

- Data and Products have been converted in machine-readable format (netCDF)
- Climate & Forecast CF metadata standard used
- Added error estimates & data analysis documentation
- Next steps:
  - Time series data to be implemented into Obs4MIPs initiative
  - Link to Copernicus Climate Service

| F | Orman: Clarest Temmers Stram Overflow Tempers of Orbinary (1995-2015)  Straintes: The Straintes of Orbinary (1995-2015)  Straintes: |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | geografial training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Data set    | Denmark Strait overflow transport                     |
|-------------|-------------------------------------------------------|
| Description | Daily average of overflow transport on Denmark Strait |
| Period      | September 1996 – September 2014                       |
| Location    | 66° N 28° W (map)                                     |
| Instruments | Moored ADCPs                                          |
| Variables   | Overflow volume transport.                            |
| Source      | Detlef Quadfasel (UHAM)                               |

| Protected area |                                            |  |  |
|----------------|--------------------------------------------|--|--|
| Data file      | ds_overflow_transports_daily_1996_2015.txt |  |  |
| Data files     | ds_overflow_transports_daily_1996_2015.nc  |  |  |
| Documentation  | <u>readme.txt</u>                          |  |  |
| References     | Jochumsen_etal_2012.pdf                    |  |  |

ECOMS meeting 05. Oct. 2016, Exeter UK





# Up to 20-yrs of Deep Convection monitoring at NACLIM time series sites

Since end 1990 – warming!







# Up to 20-yrs of Deep Convection monitoring at NACLIM time series sites

Since end 1990 – j warming!

 Return of the deep convection in NAO high years









Since end 1999 warmin

Retu deep in NAO years (2014/15 & 2015/16



vection

es





## 20-yrs of DWBC variability and deep convection

 It has long been suspected that the Labrador Sea convection feeds the upper part of the Deep Western boundary current (DWBC)













## 20-years Overflow into SPNA

- Denmark Strait & Faroer Bank Channel
- Overflow transport is constant on >1year







Denmark Strait & Denmark Strait & Significant transport change over
Faroer Bank significant transport change over
Than no statistically significant transport change over The FBC overflow has warmed by about 0.1°C Denmark Strait &

Overf transpl constan >1year





# Observational data in the context of climate modelling and climate services

- Observational data is primarily used in two ways:
  - (1) for the initialization of the predictions systems
  - (2) for the validation of the prediction systems





# Observational data in the context of climate modelling and climate services

- Observational data is primarily used in two ways:
  - (1) for the initialization of the predictions systems
  - (2) for the validation of the prediction systems
- Relevant Data "groups" (for practical reasons)
  - Satellite data
  - In-situ data
- Key for data-use is accessibility and documentation





## Satellite data





space for europe

European Space Agency

- Coordinated on international level
- "Sustained" systems
- Data accessible and well documented
- Provide boundary condition for model initialization and validation







## In-situ data

Atlantic in-situ data 2015

- Multiple networks:
  - Drifter/Floats, moorings, ships, gliders, XBT/VOS/SOOP, ...
- Organized the Global Ocean/Climate Observing System (GOOS/GCOS)
- Sustainability: ?
- Financing: individual nations















### OceanObs'09

Ocean information for society: sustaining the benefits, realizing the potential



#### **Future of Sustained Observations**

- OceanObs'09 identified tremendous opportunities, significant challenges
- Called for a framework for planning and moving forward with an enhanced global sustained ocean observing system over the next decade, integrating new physical, biogeochemical, biological observations while sustaining present observations











































**Framework for Ocean Observing** 













#### Driven by requirements, negotiated with feasibility in mind

## podu usus

### **Essential Ocean Variables**



- We cannot measure everything, nor do we need to
- basis for including new elements of the system, for expressing requirements at a high level
  - Driven by requirements, negotiated with feasibility
- Allows for innovation in the observing system over time





Towards sustained system: requirements, observations, data management

#### Readiness

#### **Mature**

#### **Pilot**

Concept

Increasing Readiness Levels

#### Attributes:

Products of the global ocean observing system are well understood, documented, consistently available, and of societal benefit.

#### **Attributes:**

Planning, negotiating, testing, and approval within appropriate local, regional, global arenas.

#### Attributes:

Peer review of ideas and studies at science, engineering, and data management community level.

**More Research** 



### **Essential Ocean Variables: Feasibility vs. Impact**









### Phenomena

• EOV shall enable monitoring of physical, biogeochemcial, biological ocean relevant phenomena:

Circulation

Fronts and eddies

Tides

**Coastal processes** 

Air-sea fluxes

Waves (Surface / Internal / Planetary)

Freshwater cycle

Sea level

**Upwelling** 

Riverine

**Heat storage** 

**Stratification** 

Mixed layer

Water mass

Sea ice extent

**Extreme events** 





## Global to Regional to Coastal







## The Current Global Ocean Observing System



## Integrated system designed to meet many requirements:

- Climate
- Weather prediction
- Global and coastal ocean prediction
- Marine hazards warning
- Transportation
- Marine environment and ecosystem monitoring
- Naval applications
- 8 of 9 Societal Benefits





- Tide gauge stations
- Drifting Buoys
- Tropical Moored Buoys
- Profiling Floats
- Ships of Opportunity
- Ocean Reference Stations
- Ocean Carbon Networks

- **Dedicated Ship Support**
- Data & Assimilation Subsystems
- Management and Product Delivery
  - Satellites -- SST, Surface Topography, Wind, Color, \* Sea Ice

## Implementation of the FOO

- International: working groups at OOPC (Physics), IOCCP (Biogeochemistry), GEOBON (Biology)
- Pacific: TOPOS2020 (revision of TOGA array)
- Europe projects (closely linked to Copernicus Marine service):
  - Atlantic: AtlantOS (2014-2019)
  - Arctic: INTAROS (2016-2021)
  - Mediterranean: MedOOS (submitted)





Galway Statement on Atlantic Ocean Cooperation Launching a European Union - Canada - United States of America

The Signatories of this Statement meeting on the occasion of the high level event

23 and 24 May 2013

## The following two topical talks

Ocean Transport estimates (Volume, heat, freshwater, carbon?) are identified as key metrics for model/data comparisons
Analysis related to two AMOC Arrays are presented:

- OSNAP 60°N (2014 present):
  - No full analysis yet (first turn-over cruise ended two weeks ago) and Laura de Steur will present first results from Irminger Sea observations
- RAPID 26.5°N (2004 present):
  - Gerard McCarthy will present latest update on subtropical AMOC time series









The research leading to these results has received funding from European Union 7th Framework Programme (FP7 2007-2013), under grant agreement n.308299 NACLIM (www.naclim.eu)



