Observations of North Atlantic Parameters ### Johannes Karstensen GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel, Germany ## The Subpolar North Atlantic 2012-2016 - Exciting times for observational oceanography! - Since 2011/12: 4 out of 5 NAO high winter - Return of deep convection - Appearance of the "cold blob" - Installation OSNAP array - Beyond SPNA (but closely connected) Arctic melting continues with lowest sea ice records 1st: 2012, 2nd: 2016, ... - -> Blue-Action H2020 project **NACLIM** ## Outline - A brief introduction into the NACLIM observations in the Subpolar North Atlantic - Sustained Ocean Observing - a structured approach: the Framework for Ocean Observing ## NACLIM observational program - Mix of long term moorings (inflow to the Nordic Seas, overflows, deep western boundary current, convection depth) - Process studies: EGC moorings freshwater transport & entrainment in overflow plume - Hydrography & Tracer sections (after NACLIM Deliverable D22.31) ### Climate data time series at NACLIM website #### **Fluxes** - Faroe Bank Channel overflow transport - Hornbanki section Atlantic inflow volume and heat fluxes - Labrador Sea western boundary current transport at 53° N - RAPID transport of MOC components at 26.5° N - Wyville Thomson Ridge overflow transport - Faroe Shetland Channel volume, heat and salt fluxes of Atlantic Water, and total fluxes - Denmark Strait overflow transport - Iceland-Faroes Atlantic inflow - Kogur Array freshwater flux #### **Entrainment** Denmark Strait overflow plume #### **Mooring data** - Angmagssalik array - Irminger Sea mooring Long-term Ocean Climate Observations LOCO2/3 #### **Hydrography data** Properties of the Atlantic Water Core in the Faroe Current ### NACLIM data and data access - Data and Products have been converted in machine-readable format (netCDF) - Climate & Forecast CF metadata standard used - Added error estimates & data analysis documentation - Next steps: - Time series data to be implemented into Obs4MIPs initiative - Link to Copernicus Climate Service | F | Orman: Clarest Temmers Stram Overflow Tempers of Orbinary (1995-2015) Straintes: The Straintes of Orbinary (1995-2015) Straintes: | |---|---| | | geografial training | | Data set | Denmark Strait overflow transport | |-------------|---| | Description | Daily average of overflow transport on Denmark Strait | | Period | September 1996 – September 2014 | | Location | 66° N 28° W (map) | | Instruments | Moored ADCPs | | Variables | Overflow volume transport. | | Source | Detlef Quadfasel (UHAM) | | Protected area | | | | |----------------|--|--|--| | Data file | ds_overflow_transports_daily_1996_2015.txt | | | | Data files | ds_overflow_transports_daily_1996_2015.nc | | | | Documentation | <u>readme.txt</u> | | | | References | Jochumsen_etal_2012.pdf | | | ECOMS meeting 05. Oct. 2016, Exeter UK # Up to 20-yrs of Deep Convection monitoring at NACLIM time series sites Since end 1990 – warming! # Up to 20-yrs of Deep Convection monitoring at NACLIM time series sites Since end 1990 – j warming! Return of the deep convection in NAO high years Since end 1999 warmin Retu deep in NAO years (2014/15 & 2015/16 vection es ## 20-yrs of DWBC variability and deep convection It has long been suspected that the Labrador Sea convection feeds the upper part of the Deep Western boundary current (DWBC) ## 20-years Overflow into SPNA - Denmark Strait & Faroer Bank Channel - Overflow transport is constant on >1year Denmark Strait & Denmark Strait & Significant transport change over Faroer Bank significant transport change over Than no statistically significant transport change over The FBC overflow has warmed by about 0.1°C Denmark Strait & Overf transpl constan >1year # Observational data in the context of climate modelling and climate services - Observational data is primarily used in two ways: - (1) for the initialization of the predictions systems - (2) for the validation of the prediction systems # Observational data in the context of climate modelling and climate services - Observational data is primarily used in two ways: - (1) for the initialization of the predictions systems - (2) for the validation of the prediction systems - Relevant Data "groups" (for practical reasons) - Satellite data - In-situ data - Key for data-use is accessibility and documentation ## Satellite data space for europe European Space Agency - Coordinated on international level - "Sustained" systems - Data accessible and well documented - Provide boundary condition for model initialization and validation ## In-situ data Atlantic in-situ data 2015 - Multiple networks: - Drifter/Floats, moorings, ships, gliders, XBT/VOS/SOOP, ... - Organized the Global Ocean/Climate Observing System (GOOS/GCOS) - Sustainability: ? - Financing: individual nations ### OceanObs'09 Ocean information for society: sustaining the benefits, realizing the potential #### **Future of Sustained Observations** - OceanObs'09 identified tremendous opportunities, significant challenges - Called for a framework for planning and moving forward with an enhanced global sustained ocean observing system over the next decade, integrating new physical, biogeochemical, biological observations while sustaining present observations **Framework for Ocean Observing** #### Driven by requirements, negotiated with feasibility in mind ## podu usus ### **Essential Ocean Variables** - We cannot measure everything, nor do we need to - basis for including new elements of the system, for expressing requirements at a high level - Driven by requirements, negotiated with feasibility - Allows for innovation in the observing system over time Towards sustained system: requirements, observations, data management #### Readiness #### **Mature** #### **Pilot** Concept Increasing Readiness Levels #### Attributes: Products of the global ocean observing system are well understood, documented, consistently available, and of societal benefit. #### **Attributes:** Planning, negotiating, testing, and approval within appropriate local, regional, global arenas. #### Attributes: Peer review of ideas and studies at science, engineering, and data management community level. **More Research** ### **Essential Ocean Variables: Feasibility vs. Impact** ### Phenomena • EOV shall enable monitoring of physical, biogeochemcial, biological ocean relevant phenomena: Circulation Fronts and eddies Tides **Coastal processes** Air-sea fluxes Waves (Surface / Internal / Planetary) Freshwater cycle Sea level **Upwelling** Riverine **Heat storage** **Stratification** Mixed layer Water mass Sea ice extent **Extreme events** ## Global to Regional to Coastal ## The Current Global Ocean Observing System ## Integrated system designed to meet many requirements: - Climate - Weather prediction - Global and coastal ocean prediction - Marine hazards warning - Transportation - Marine environment and ecosystem monitoring - Naval applications - 8 of 9 Societal Benefits - Tide gauge stations - Drifting Buoys - Tropical Moored Buoys - Profiling Floats - Ships of Opportunity - Ocean Reference Stations - Ocean Carbon Networks - **Dedicated Ship Support** - Data & Assimilation Subsystems - Management and Product Delivery - Satellites -- SST, Surface Topography, Wind, Color, * Sea Ice ## Implementation of the FOO - International: working groups at OOPC (Physics), IOCCP (Biogeochemistry), GEOBON (Biology) - Pacific: TOPOS2020 (revision of TOGA array) - Europe projects (closely linked to Copernicus Marine service): - Atlantic: AtlantOS (2014-2019) - Arctic: INTAROS (2016-2021) - Mediterranean: MedOOS (submitted) Galway Statement on Atlantic Ocean Cooperation Launching a European Union - Canada - United States of America The Signatories of this Statement meeting on the occasion of the high level event 23 and 24 May 2013 ## The following two topical talks Ocean Transport estimates (Volume, heat, freshwater, carbon?) are identified as key metrics for model/data comparisons Analysis related to two AMOC Arrays are presented: - OSNAP 60°N (2014 present): - No full analysis yet (first turn-over cruise ended two weeks ago) and Laura de Steur will present first results from Irminger Sea observations - RAPID 26.5°N (2004 present): - Gerard McCarthy will present latest update on subtropical AMOC time series The research leading to these results has received funding from European Union 7th Framework Programme (FP7 2007-2013), under grant agreement n.308299 NACLIM (www.naclim.eu)