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A tale of two methods... and two models

Stochastic dynamics (Batté and Déqué 2012)

Correction-perturbation of model prognostic variables

Randomly substracting a priori estimated model errors

Non-gaussian uncentered perturbations

Consistency in space and between variables

SPPT (Palmer et al. 2009)

Random perturbations of physical parametrization tendencies

White noise with AR(1) regression in time

Consistency in time and space (combination of patterns)

Track record of improving spread and forecast quality (Weisheimer et al. 2014)

Two seasonal prediction systems based on different GCMs

CNRM-CM (Voldoire et al. 2013) : post-CMIP5 version with ARPEGE v6 (prognostic physics)

EC-Earth v3.0.1 (Hazeleger et al. 2010)
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Presentation outline

1 The "stochastic dynamics" technique

2 Impact of SPPT

3 Forecast system development : what next ?
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Stochastic dynamics in CNRM-CM

Estimation of the perturbation population

Nudged coupled seasonal re-forecast run : NDJF
1979/80–2012/13

Weak nudging (τ = 1 month) of temperature,
vorticity and specific humidity in the atmosphere
towards ERA-Interim

Tapering in the upper and lower levels of the
atmosphere

δX(t) = X ref(t)−X(t)
τ

stored each day

Nudging

∂X
∂t

(t) = M(X(t), t) +
X ref(t) − X(t)

τ

In-run perturbations

Use δX̃ , correction term from another year, as a
perturbation for time t in seasonal re-forecast for year y

Different sets of corrections are drawn for each ensemble
member

Corrections are simultaneous for the three fields, drawn
from other years of the re-forecast period, within the same
calendar month

Perturbations

∂X
∂t

(t) = M(X(t), t) + δX̃(t)
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Coupled seasonal re-forecasts with CNRM-CM

Boreal winter (NDJF) ensembles

REF : reference coupled model experiment without perturbations
"Stochastic dynamics" experiments :

I SMM : random monthly mean corrections of ARPEGE tendency errors applied to each member
I S5D : random sequences of five consecutive days of error corrections applied to each member

30-member ensembles ; NDJF 1979/80–2012/13 re-forecast period (34 years)

Components of the CNRM-CM system (Voldoire et al. 2013)

Initialization

Atmosphere : ERA-Interim (Dee et
al., 2011)

Ocean : NEMOVAR reanalysis

Evaluation

ERA-Interim as reference

CRU for surface temperature over
land

Deterministic and probabilistic
forecast quality
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Impact on Z500 bias development

Mean evolution of Z500 bias according to forecast time over the 1979/80–2012/13 re-forecast period for experiments REF, SMM
and S5D.
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North Atlantic weather regimes and NAO index

Weather regime statistics and NAO skill

NAO+ Blocking NAO- Atl. Ridge NAO
index

Run Freq. Length Freq. Length Freq. Length Freq. Length r

ERA-I 32.1% 9.48 24.4% 7.14 18.8% 9.27 16.6% 5.85 -

REF 26.5% 8.28 23.4% 6.56 24.0% 8.90 16.8% 6.41 0.41
SMM 28.0% 8.36 23.8% 6.78 21.8% 9.35 17.1% 6.38 0.38
S5D 28.0% 8.35 23.8% 6.97 21.9% 9.16 17.1% 6.38 0.54

Perturbations generally improve weather regime frequency when compared to ERA-Interim
statistics

They also improve the regime residency w.r.t. REF even when it is too short

Very little difference is found between both methods

NAO skill is best with S5D
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Impact in EC-Earth

Experiments

EC-Earth 3.0.1 with IFS cy36r4

Gridpoint nudging of T, q, u, v ; τ = 4 days

Compared to CNRM-CM run with stronger
τ (15 days for T,q and 5 days for Ψ)

NDJF 1993-2009 with GLORYS ocean
reanalyses

(a) CNRM-CM DJF (b) EC-Earth3 DJF

Relative absolute bias with respect to REF ensembles in CNRM-CM and EC-Earth3 ensemble forecasts with stochastic dynamics
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The SPPT method

Description

Method developed at ECMWF (Buizza et al., 1999 ; Palmer et al., 2009)

Random multiplicative coefficients applied to physical tendencies of atmospheric variables

Xp = (1 + µr)Xc ; with X = u, v ,T , q

Spectral coefficients of r are defined by an AR(1) process forced with gaussian random
numbers ; µ is used to taper perturbations close to the surface and in the stratosphere

r patterns

Space and time decorrelation scales

Several patterns can be linearly combined

Same r for all variables and model levels
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Sets of experiments for SPPT in EC-Earth3

Reference experiment

T255L91 atmospheric resolution, ORCA1L46 ocean resolution

10 member ensemble, startdates May and November 1993-2009

Verified against ERA-Interim reanalysis data

SPPT experiments with different amplitudes in patterns

Name Scale 1 Scale 2 Scale 3
σ ∆x ∆t σ ∆x ∆t σ ∆x ∆t

(km) (days) (km) (days) (km) (days)
SPPT3 0.125 2000 30 0.250 1000 3 0.500 500 0.25

SPPT2L 0.288 2000 30 0.173 1000 10 - - -

SPPT3 pattern SPPT2L pattern
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Impact on SST prediction : ensemble spread

Relative spread with respect to REF experiment

(a) SST DJF SPPT3 (b) SST JJA SPPT3

(c) SST DJF SPPT2L (d) SST JJA SPPT2L

inf

Adapted from Fig. 5 in Batté and Doblas-Reyes (2015)
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Impact on SST prediction : probabilistic scores

Impact on Niño 3.4 SST probability forecasts
Above second tercile

(a) SST DJF REF (b) SST DJF SPPT3 (c) SST DJF SPPT2L
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Below first tercile
(d) SST DJF REF (e) SST DJF SPPT3 (f) SST DJF SPPT2L
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Figs. 10-11 in Batté and Doblas-Reyes (2015)
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Impact on SST prediction : probabilistic scores

Impact on Niño 3.4 SST probability forecasts
Above second tercile

(a) SST JJA REF (b) SST JJA SPPT3 (c) SST JJA SPPT2L
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Below first tercile
(d) SST JJA REF (e) SST JJA SPPT3 (f) SST JJA SPPT2L
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Figs. 10-11 in Batté and Doblas-Reyes (2015)
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Impact in CNRM-CM

SPPT in CNRM-CM

Slightly updated version wrt SD experiments (ARPEGE v6.2 - T255L91)

SPPT perturbations of u and v physical tendencies only

Evaluation for boreal winter over 1979-2012 re-forecast period

Name Scale 1 Scale 2 Scale 3
σ ∆x ∆t σ ∆x ∆t σ ∆x ∆t

(km) (days) (km) (days) (km) (days)
SPPT3 0.125 2000 30 0.250 1000 3 0.500 500 0.25

Impact on RMSSS for DJF near-surface temperature

(a) REF (wrt ERA-Interim) (b) SPPT3 (wrt REF)
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Tentative summary...

Impact of both methods on model bias and forecasting skill (DJF)

Stochastic dynamics SPPT

Mid lats Tropics Mid lats Tropics

EC-Earth limited patchy

SST bias increase
Bias improved (except Eq. Pacific)

Skill unchanged Skill improved

CNRM-CM patchy

SST bias increase
Z500 bias improved Depends on τ (except Eq. Pacific)

Modest Z500/NAO Skill unchanged ENSO skill
skill increase improved
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What next ?

Multiple layers of complexity

These conclusions are for one component
of the GCMs, one method at a time !

Non-linear adverse effects, compensation
effects

High uncertainties in (most) skill
evaluations due to limited ensembles and
hindcast lengths

Future improvements

Perturbations may be as (more ?) relevant elsewhere : ocean component (Brankart et al.
2015 ; Andrejczuk et al. 2016), sea ice (Juricke et al. 2013), land surface (MacLeod et al.
2012), coupling processes (Williams 2012)

Combining methods requires a step-by-step assessment, bearing in mind possible
cancellation/saturation of effects and tuning requirements

Improvements to SPPT (correct energy budget, iSPPT)
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What next ?

Results are not only model-dependent and
method-dependent...

But also resolution dependent !

EC-Earth3 with high resolution atmosphere
(T511L91) and ocean (ORCA0.25)

SPPT (same settings) is still efficient to
generate spread

Higher resolution is more efficient in
improving the model RMSE (Prodhomme
et al. 2016)

EC-Earth boreal summer Niño 3.4 SST ensemble
spread and RMSE according to forecast time

(from Berner et al. 2016)

Food for thought

Tradeoff between computational cost and gain in forecast quality

Tuning : high resolution version here was not optimally tuned (IFS with T255L91 settings)

Both high resolution and stochastic perturbations must be implemented alongside continued
efforts in model development (physical parameterizations, dynamics, initialization techniques)

Beware of hasty conclusions !
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Thank you for your attention !
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